13
117
melse af Middelomløbstiden indenfor et synodisk Omløb for Jupiter giver for de to Perioder, der ligger forud for 1676:
1671 4⁄5 Kl. 9h 54m 0s til 1672 22⁄5 Kl. 10h 58m 46s |
Forløben Tid: 384 Døgn 1h 4m 46s[1] = 217 (1 18 28 30). |
1672 3⁄1 Kl. 13h 4m 20s til 1673 4⁄2 Kl. 18h 2m 10s |
Forløben Tid: 398 Døgn 4h 57m 50s = 225 (1 18 28 31). |
Paa samme Maade faar man for Perioderne i 1673—1674:
For Perioden 1674-1675 faas:
1674 15⁄6 Kl. 8h 55m 55s til 1675 20⁄7 Kl. 8h 28m 17s |
Forløben Tid: 399 D. 23h 32m 22s = 226 (1 18 28 33). |
Heraf ses altsaa, at man maa regne med følgende Middelomløbstider for 1ste Jupitermaane:
D. | h | m | s | ||
1671—1672: | 1 | 18 | 28 | 30 | |
1672—1673: | 1 | 18 | 28 | 31 | |
1673—1674: | 1 | 18 | 28 | 33 | (Middeltal af de to Bestemmelser) |
1674—1675: | 1 | 18 | 28 | 33 | . |
Disse Tal viser, at Omløbstiden har været stigende fra 1671—1675, mens Jupiter har nærmet sig Solen; er der nogen Aarsagsforbindelse til denne Afstandsforandring, skulde man vente Stigningen yderligere fortsat i de følgende Aar. Vender vi os nu til Aaret 1676, ses det, at hvis man ud fra Formørkelsesobservationen d. 23⁄8 forudberegner Formørkelsen d. 9⁄11, vil man faa den opgivne Forsinkelse ca. 10m, hvis man benytter Omløbstiden 1 18 28 34:
Dag i Aaret | h | m | s | ||||
1676 23⁄8 | Nr. 236 | 8 | 13 | „ | Middeltid | ||
44 Omløb à 1 18 28 34 = | 77 D. | 20 | 51 | 56 | |||
Nr. 314 | 5 | 9 | 56 | Middeltid | |||
+ | 15 | 41 | Tidsæqvation | ||||
1676 9⁄11 | Nr. 314 | 5 | 25 | 37 | Soltid, |
der ligger, som forlangt i Beretningen af 1676, ca. 10m (10m 9s) forud for det iagttagne Tidspunkt 5 35 45. Hvorfra Rømer har denne Middelomløbstid, 1 18 28 34, kan ikke ses. Beregner man den for Perioden:
- ↑ Paa F4 staar ved R.'s Fejlskrift 45s.